New Evidence for a Strange Idea


The article I’m sharing below caught my attention due to its theoretical alignment with a flurry of OBEs I had last week, several of which kept showing me something that seemed intended to get a message across – a message involving a world view that I (probably you too) have held all my life: that the cosmos sprawls out infinitely into, well, infinity. Who hasn’t pretzeled their mind every now and then pondering infinity?

Dscf6228 recovered 02

Infinite Trip by Grei

These recent journeys had a recurring feature that kept showing me something I’d never seen before, being: the sky appearing more like a glass bowl, a finite plane (meaning the glass of the bowl, not the space within the bowl), filled with holograms of stars, planets, and mysterious craft that move around among them. If you read the brief article which follows, you’ll get what I’m attempting to transmit here.

In one journey, the concept of “sky as a transparent screen” was really hammered home by my witnessing the phenom of colored lights that seemed to originate, or bloom, within a very narrow, flat plane, and then then spread out across “the sky,” much like food coloring dropped into a glass bowl of water could be seen (through the glass) spreading through the water. Except with this “glass bowl,” I was under the (upside-down) bowl observing “splashed” colors of light spreading out along a transparent plane or membrane overhead (ie, the “sky”).

Could these spectral colors have represented “source energy” containing infinite colors, being “applied” to a (or our) quantum holographic screen? Might this be the beginning of manifestation?  I’ve been pondering possibilities.

Within days of this series of experiences, the following article appeared under my nose from an unfamiliar source.

If you, like me, are an intrigued & lifelong inquirer into the nature of reality (don’t take for granted that what you merely see/perceive with your 3D senses is what, in actuality, it really is)… you might find this interesting.

I sense I’m in the middle of a foundational lesson here. Virtually ALL my “quests for truth” have begun with a very curious personal anomalous experience, and then my curiosity pulls in more intel that seems to relate to the experience. Dots begin connecting that eventually bring a new awareness – and, ideally, understanding – of what this IS here, this daunting cosmos in which we are conscious presences & grappling participants! 

SO: Perhaps a new rabbit hole for you to peek into, if curious. Offered with love for whatever it all is!! ox Whitehawk


New Evidence for the Strange Idea that the Universe Is a Hologram

by Brian Koberlein

11714_916cb4b04f32e307ee2a5c32c8d4f7b7

One of the great mysteries of modern cosmology is how our universe can be so thermally uniform—the vast cosmos is filled with the lingering heat of the Big Bang. Over time, it has cooled to a few degrees above absolute zero, but it can still be seen in the faint glow of microwave radiation, known as the cosmic microwave background.

In any direction we look, the temperature of this cosmic background is basically the same, varying by only tiny amounts. But according to the standard “cold dark matter” model of cosmology, there wasn’t enough time for hotter and cooler regions of the early universe to even out. Even today we would expect parts of the cosmic background to be much warmer than others, but that isn’t what we observe.

One solution to this cosmological problem is known as early inflation. If the observable universe was extremely tiny in its earliest moments, it could have reached a uniform temperature very quickly. Afterwards, the theory says, the universe underwent a brief period of rapid expansion, eventually leading to the universe we observe today. We don’t have any direct evidence for early cosmic inflation, but because it would solve several issues in cosmology, it is a widely supported idea.

The universe can be viewed as a “surface” with one less dimension.

Recently, a team of astronomers looked at data from the Planck satellite, which gathered the most accurate measurements of the cosmic background thus far. They wanted to compare fluctuations across vast regions of the sky, known as low multipole moments, with the predictions of the standard cosmological model and a model that’s somewhat stranger, a holographic one. What if everything around you, from the distant stars to your very hands, were a hologram?

Like Plato’s cave, our world of solid objects and three-dimensional space would simply be a shadow of a two-dimensional reality. On the human scale a holographic universe would be indistinguishable from the reality we expect, but on a cosmic scale there could be subtle differences we might be able to detect.

In the holographic view of cosmology, early inflation is driven by interactions of the quantum field, which would slightly change the appearance of the cosmic microwave background. This is particularly true for low multipole moments, and this difference makes it possible, at least in principle, to prove that the holographic principle is true.

In their paper, published last month in Physical Review Letters, the team report the holographic model fitting the Planck satellite data slightly better than the standard model. The results don’t prove the universe is holographic, but they are consistent with a holographic model.

The idea that our universe might be holographic comes from string theory. Although string theory hasn’t been proven experimentally, its mathematical structure has an elegance and power that makes it appealing as a theoretical model. The holographic principle in string theory is just such an example.

In its broadest form, the holographic principle states that anything you can know about a particular volume of space can be learned by looking at the surface enclosing the volume. Just as a hologram can contain a three-dimensional image within a sheet of glass or plastic, the universe could contain its vast volume within a surface.

For example, imagine a road 10 miles long that is “contained” by a start line and a finish line.  Suppose the speed limit on this road is 60 miles per hour, and we want to know if a car has been speeding. One way to do this is to watch a car travel the whole length of the road, measuring its speed the whole time. But another way is to simply measure when a car crosses the start line and finish line. At a speed of 60 miles per hour, a car travels a mile a minute, so if the time between start and finish is less than 10 minutes, we know the car was speeding.

If the holographic principle is true, then the universe can be viewed in two different ways: one of space and volume as we intuitively experience it, and one of a “surface” with one less dimension. This holographic duality is mathematically powerful because some laws of physics can be much easier to work with in one view than the other.

The structure of our universe is driven by the constant pull of gravity between stars and galaxies. In the present era, gravity is weak compared to other forces, and is described as a gravitational field in general relativity. In the dual holographic view, gravity is described as a quantum field that can interact strongly with mass. Since it is easier to calculate weak interactions than strong ones, the general relativity approach is more useful. However, in the early moments of cosmic time, when the universe was hot and dense, the gravitational fields of relativity were strong, so quantum fields of the holographic view might be easier to deal with.

The fact that both the standard and holographic models can account for early inflation supports the idea that the holographic principle applies to our universe. Cosmic inflation remains a mystery, but by viewing the universe as a hologram we might just be able to solve it.

Brian Koberlein is an astrophysicist and physics professor at Rochester Institute of Technology. He writes about astronomy and astrophysics on his blog One Universe at a Time. Find him on Twitter @BrianKoberlein.

Advertisements

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s